

Project A.P.E.S. Critical Design Review

Presented by: Georgia Institute of Technology Mile High Yellow Jackets

Agenda

- 1. Mission Overview (3 Min)
- 2. Educational Outreach Update (2 Min)
- 3. Project Budget (3 Min)
- 4. Launch Vehicle (7 min)
- 5. Flight Systems (5 Min)
- 6. Flight Avionics (7 min)
- 7. Questions (15 Min)

Project A.P.E.S. CDR

MISSION OVERVIEW

TO MAINTAIN A SUSTAINABLE TEAM DEDICATED TO THE GAINING OF KNOWLEDGE THROUGH THE DESIGNING, BUILDING, AND LAUNCHING OF REUSABLE LAUNCH VEHICLES WITH INNOVATIVE PAYLOADS IN ACCORDANCE WITH THE NASA UNIVERSITY STUDENT LAUNCH INITIATIVE GUIDELINES.

Mission Success Criteria

Requirement	Design feature to satisfy that requirement	Requirement Verification	Success Criteria
Provide a suitable environment for the payload	The payload requires a steady, but randomly vibrating platform to test the APES system. Unsteadiness in the motor's thrust and launch vehicle aerodynamics cause vibrations.	By measuring the acceleration with the payload's accelerometers	The APES system dampens out a recordable amount of vibration.
To fly as close to a mile in altitude as possible without exceeding 5,600 ft.A motor will be chosen to propel the vehicle to a mile in altitude		Through the use of barometric altimeters	The altimeters record an altitude less than 5,600 ft
The vehicle must be reusable The structure will be robust enough to handle any loading encountered during the flight		Through finite element analyses and structural ground testing of components	The vehicle survives the flight with no damage

Mission Timeline

Project A.P.E.S. CDR

EDUCATIONAL OUTREACH

Educational Outreach

- Goal: Promote interest in STEM fields
- Educators can request presentations or handson activities for their classroom

Education Outreach Activities

Activity	Date
FIRST LEGO League	Jan. 28 th
Civil Air Patrol Model Rocketry Program	ТВО
National Air and Space Museum Discovery Station	Discovery Station Proposal submitted – in the approval process
Young Astronauts Progrram	TBD

Project A.P.E.S. CDR

PROJECT BUDGET

Budget Summary

	Actual Cost	Project Reserves
PDR	\$ 981.44	35.52%
CDR	\$2,032.62	62.43%
FRR	\$3,532.62	78.21%
Launch	\$5,657.62	42.14%

Ge<u>o</u>rgia

11

Flight Vehicle Expenditure Summary

Flight Vehicle & System Cost at CDR

2011-2012 Overall Flight Vehicle Costs (\$5,000 Limit)			
FS Flight Hardware	\$ 438.20		
LV Flight Hardware	\$ 458.90		
Motor	\$ 300.00		
Remaining	\$ 3,802.90		
Total	\$ 5,000.00		

Total Flight Vehicle Expenditures

	Remaining	Cumulative Costs	% Remaining	usi
PDR	\$ 4,713.10	\$ 286.90	94.26%	1100
CDR	\$ 4,102.90	\$ 897.10	82.06%	LV.
FRR	\$ 3,067.90	\$ 1,932.10	61.36%	
Launch	\$ 2,205.40	\$ 2,794.60	44.11%	

eorgia		
Tech	XXLI	

G

Project A.P.E.S. CDR

LAUNCH VEHICLE

Changes Since PDR

Rocket:

- Drogue is now 4 ft in diameter and slows down the vehicle to 50 ft/s
- Main chute diameter is now 12 ft and slows down the vehicle to 15 ft/s
- Ejection charge masses increased to account for parachute packing.
- Cardboard motor tube added for increased fin epoxy surface area
- Thrust plate to be cut from a wood block using a waterjet
- Thrust retention ring to be cut from an aluminum plate on a waterjet
- L-brackets added at epoxy joints for added strength

Vehicle Summary

- Predicted apogee: 5315 ft
- Stability margin: 3.6 calibers
- Motor: AeroTech L1390

- 47 ft/s at 60 inches up the rail
- Max Mach 0.55
- Total weight: ~41 lbs
- Dual deployment

Rocket Fins

- Material: Carbon fiber honeycomb
- Attachment: Epoxy

Variable	Value
Number of fins	3
Root chord	15 in
Tip chord	3 in
Height	6 in
Sweep Angle	59.6°
Sweep Length	9.8 in

Booster Section

- Material: Aluminum and wood
- Attachment: Nuts, bolts, and epoxy

Thrust Plate

Retention Plate

FEA Analysis & Results

Part	Material	Force applied (lb _f)	Max displacement (inches)	Max stress (psi)	Safety factor
Thrust Plate	BS1088 Plywood	408	.00838	404.6	3.3
Stringers	AL 6061	408	.00526	483.3	2.9

Integrated Modular Payload System (iMPS)

• Material: G10 Fiberglass, bolts

Payload Structure Impact Test

Impactor mass (kg)	Factor of Safety	Impact Energy (J)	Impactor Height (in)	Stringer length (in)	Notes
3.98	1	5.23	11.08	14	Pass
3.98	2	10.47	22.16	14	Pass
3.98	3	15.70	33.24	14	Pass

Skin – Test Vehicle, Korsakov

Georgia

NIVERSITY STUDENT LAUNCH INITIATIVE

Korsakov Estimated Flight Profile

Recovery

- Dual deployment system
- Altimeter: 2 StratoLoggers for redundancy

Ejection Charges

- Black powder ejection charges
- Ground testing will be performed prior to test flight

	Main Parachute	Drogue Parachute
Total Pressurization	24.7 psia	23.7 psia
Pressure at Deployment Altitude	14.4 psia	12.1 psia
Differential Pressurization	10.3 psi	11.6 psi
Ejection Force	202.2 lbf	227.8 lbf
Amount of black powder	4.5 grams	3.6 grams
Factor of Safety	1.26	1.42

Drift Profile

Georgia

Test data point supporting accuracy of Recovery Calculations located in the back-up slides

Recovery – Main

Recovery – Drogue

Mass Breakdown

Component	Weight (lbs)
Nose Cone	1.6
Avionics System	5.0
Allotted Payload	10
Payload Structure	3.5
Recovery System	5.8
Booster Structure	6.2
AeroTech L1390 Motor	8.6
Total	40.7

Total Weight without Motor (lbs)	Total Weight with Motor (lbs)	Motor Required	Apogee (ft)
28	36.0	AeroTech L1150R-P	5242
30	38.0	AeroTech L850W-P	5253
32	40.0	AeroTech L1520T-PS	5170
32	40.5	AeroTech L1390G-P	5315
33	41.5	AeroTech L1390G-P	5259

Finished Product

Project A.P.E.S. CDR

FLIGHT SYSTEMS

Flight Systems Responsibilities

- Payload
- Avionics

Georgia

- Communications
- A.P.E.S. Ground Testing

Flight Systems: Payload

- Current solutions to the problem of eliminating natural frequency oscillations
 - Mechanical C-Spring Isolators
 - Tuned Oscillation Arrays
- Use of advanced isolation components adds mass and design constraints

Copyright: NASA

Copyright: NASA

Flight Systems: Universal Mounting Bracket

Flight Systems: Universal Mounting Bracket

- Repeatable manufacturing
- Few constraints on Payloads
- Ease of mounting hardware
- High durability

**Deformation Exaggerated

Flight Systems: Ground Test Plan

Goals:

- 1. Develop Control Theories
- 2. Confirm Force Equations
- 3. Produce Flight Experiment

Ground Test Sequence

- 1. Sensor Calibration
- 2. 1-D Testing
- 3. 2-D Testing
- 4. 3-D Testing
- 5. Flight Model Test

Preliminary Solenoid Ground Testing

Flight Systems: A.P.E.S.

Project A.P.E.S. CDR

FLIGHT AVIONICS

A.P.E.S. Controller

PID Control System to be Implemented

Proportional-Integral-Derivative feedback loop

Set point: Platform in center of module

Error: Distance from Set point

Distance Detection

- Commercial Board
 - ARM Cortex M3 Processor
- Sensors:
 - 2x OVM7690 Camera Cubes
- Software:
 - OpenCV object tracking and distance estimation

Control

Georg

- 6x TI DRV104 Solenoid driver ICs
- 6x solenoids with ~300 turns of 30 gauge magnet wire

41

Flight Systems: Avionics

Custom flight computer board

ATmega 2560

Xbee Pro

Sensors

Sensors Used

- ADXL345 Triple Axis Accelerometer
 - Logs orientation and acceleration
 - Data sent to A.P.E.S. controller and logged

- HMC1043 3-Axis Magnetic Sensor
 - Magnetic field strength logging

- Fastrax UP501 GPS Module
 - Tracking data for logging and recovery

 Data sent to computer and displayed on map

Georgia

BACK-UP

Team Summary

	Team Summary	
School Name	Georgia Institute of Technology	
Team Name	Mile High Yellow Jackets	
Project Title	Active Platform Electromagnetic Stabilization	
	(A.P.E.S.)	
Launch vehicle	Vespula	
Name		
Project Lead	Richard Z.	
Safety Officer	Matt S.	
Team Advisors	Dr. Eric Feron, Dr. Marilyn Wolf	
NAR Section	Primary: Southern Area Launch vehicle (SoAR)	
	#571	
	Secondary: GA Tech Ramblin' Launch vehicle	
	Club #701	
NAR Contact	Primary: Matthew Vildzius	
	Secondary: Jorge Blanco	

Georgia Tech Team Overview

- 7 person team composed of both undergraduate and graduate students
 - Grad Students: 2
 - Undergraduates: 15
- Highly Integrated team across several disciplines

Field	No. of Students
Aerospace Engineering	9
Computer Science/ Computer Engineering	3
Electrical Engineering	6
Mathematics	1

Actual vs. Predicted Budget

			%
	Predicted	Actual	Difference
PDR	\$ 924.53	\$ 981.44	5.80%
		\$	
CDR	\$ 3,636.80	2,032.62	-44.11%
		\$	
FRR	\$ 7,513.39	3,532.62	-52.98%
		\$	
Launch	\$ 9,854.58	5,657.62	-42.59%

Backup Slide - Flight Profile

Georgia

INVERSITY STUDENT LAUNCH INITIATIVE

Backup - Payload Structure – Test Result

Fastener location	F.S. = 1	F.S. = 1.5	F.S. = 2	F.S. = 2.5	F.S. = 3
1	р	Р	р	р	Р
2	Р	Р	Р	Р	Р
3	Р	Р	Р	Р	Р
4	Р	Р	Р	Р	Р
1A	Р	Р	Р	Р	Х
2A	Р	Р	Р	Х	Х
3A	Р	Р	Р	Х	Х
4A	Р	Р	Р	Р	Р
5	Р	Р	Р	Р	Р
6	Р	Р	Р	Р	Р
7	Р	Р	Р	Р	Р
8	Р	р	Р	Р	Р

Backup Slide – Recovery Calculations

Backup Slide – Recovery Calculations

Black Powder Equation:

$$W = \frac{V\Delta P}{RT} \tag{1}$$

Variable	Description	Units
W	Weight of the black powder in pound mass	$454 \cdot W_{gram}$
V	Volume of the container to be pressurized	in ³
ΔP	Pressure Differential	psia
R	Gas Combustion Constant for black powder	$\frac{22.16f t l b_f}{l b_m \cdot R}$
Т	Gas Combustion Temperature	3307 °R

$$F_{pin} = \frac{\sigma \pi d^2}{4}$$

- Volume to be pressurized accounts for the parachute packaging
- Pressure calculated at deployment height for each parachute

Backup Slide - Korsakov Drift

Georgia USL

INVERSITY STUDENT LAUNCH INITIATIVE

Detailed Ground Testing Results

Initial Steady-State DC Ground Testing of Solenoid

Characteristic	Value
Turns	300
Resistance	2.6 Ω
Wire Gauge	30
Field Strength @ 0.86A	1100 μΤ

Georgi

Response Surface: Goodness of Fit

Moments	
Mean	0.1041408
Std Dev	3.319957
Std Err Mean	0.6061385
Upper 95% Mean	1.3438332
Lower 95% Mean	-1.135551
N	30

Alternative Response Surface Fits

Flight Systems: Science

- Interaction of magnetics fields and permanently magnetic or ferromagnetic substances
- For ferromagnetic substance:

 $\mathbf{F}(\mathbf{r},\mathbf{m}_{s},\mathbf{m}) = \frac{3VN^{2}I^{2}S^{2}\mu\chi_{m}}{16\pi^{2}r^{7}} [(\mathbf{\hat{n}}\cdot\mathbf{\hat{r}})\mathbf{\hat{n}} - \mathbf{\hat{r}} - 4(\mathbf{\hat{n}}\cdot\mathbf{\hat{r}})^{2}\mathbf{\hat{r}}]$

• For permanently magnetic substance:

 $\mathbf{F}(\mathbf{r},\mathbf{m}_{s},\mathbf{m}) = \frac{3VNIS\mu_{0}}{4\pi r^{4}} [(\hat{\mathbf{n}}\cdot\hat{\mathbf{r}})\mathbf{M} + (\mathbf{M}\cdot\hat{\mathbf{r}})\hat{\mathbf{n}} + (\hat{\mathbf{n}}\cdot\mathbf{M})\hat{\mathbf{r}} - 5(\hat{\mathbf{n}}\cdot\hat{\mathbf{r}})(\mathbf{M}\cdot\hat{\mathbf{r}})\hat{\mathbf{r}}]$

Flight Avionics Schematic

